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Abstract

We consider a quantum (or leaky) wire in the plane, and the wire supports
a singular attraction which becomes large at distant points on the wire. An
analogous regular potential arises from the motion of a hydrogen atom in an
electric field. We prove that, as in the regular case, the spectrum is the whole
of (−∞,∞).

PACS numbers: 02.30.Jr, 03.65.−w
Mathematics Subject Classification: 81Q10

1. Introduction

Let � be a continuous and piecewise smooth curve extending to infinity in the plane R2, and
let q be a given real-valued continuous function defined on �. We consider the operator H
defined by

Hψ(x) = −�ψ(x) (x ∈ R2\�) (1)

with domain D(H) consisting of functions ψ ∈ W 2,2(R2\�) which are continuous at � and
with the normal derivatives having a jump in the sense that

∂ψ

∂n1
(x) +

∂ψ

∂n2
(x) = −q(x)ψ(x) (x ∈ �). (2)

Here n1 and n2 denote the normals directed away from � on the two sides of �.
If q is bounded and � has no cusps, it is known that H is essentially self-adjoint, and its

closure H1 can be expressed in terms of distributions as

H1 = −� − q(x)δ(x − �),

where δ is the Dirac delta function and D(H1) ⊆ W 1,2(R2) [6, section 2.1], [9, section 2.1].
The spectral properties of H1 have been much investigated in recent years, a principal feature
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being the influence which the geometry of � has on the nature of the spectrum σ(H1) of H1.
We refer to the comprehensive survey [6] for the current position.

The physical motivation for this setting is that the Hamiltonian H1 represents the motion
of a particle under the influence of a singular attraction (when q(x) � 0) along �. Unlike
other models for this situation, like quantum graphs and fat graphs, the particle is no longer
confined to the wire, but lives in the whole space, allowing for quantum tunneling. For this
reason, in this context, � is called a leaky wire. We again refer to [6] for a more detailed
discussion of the physical motivation.

An example of a spectral property which depends on the geometry of � is given in [8].
Here q(x) is a positive constant c and, subject to certain conditions on �, σ(H1) = [− 1

4c2,∞)
.

One of the conditions is that � should be asymptotically straight (a.s.) in the sense that, in
terms of the arc length s along �, the curvature k(s) satisfies |k(s)| � (const)|s|−β for large s
and some β > 5/4 [8, remark 5.6].

A similar result concerning σ(H1) was proved in [1] using the singular (or Weyl) sequence
method. This requires � to be a.s. in the different but similar sense that � should lie close to
arbitrarily long disjoint line segments as � recedes to infinity. We refer to [1, section 3] for
the details, but this idea of a.s. will also appear in this paper in section 2 below.

A second example of a spectral property of σ(H1) is the band structure associated with
the periodicity of either q or � [6, section 6.1], [7, 10]. This structure is of course well
known for the classical Schrödinger operator with a regular periodic potential which reflects
the crystalline nature of matter [3], [12, pp 279–315]. There is however a quite different type
of regular potential which is relevant to this paper. The motion of a hydrogen atom in the
presence of an electric field is described by a regular potential which is unbounded and for
which the associated spectrum is the whole of (−∞,∞) [14, sections 15.16–15.19]. The
question therefore arises whether there is a corresponding spectral property for an unbounded
singular potential q supported on �.

Similar models also arise when dealing with interface crack problems in fracture
mechanics (cf [11] and references therein).

In this paper therefore, we allow q to be unbounded, and it is no longer clear that H is
essentially self-adjoint. However, in order to access spectral theory, we begin by adding the
requirement that

qψ ∈ L2(�, ds) (3)

for functions ψ ∈ D(H). Then a simple application of Green’s theorem gives

(Hψ, φ) =
∫

R2
(∇ψ) · (∇φ) dx −

∫
�

qψφ ds

for ψ and φ in D(H). Thus H is symmetric in L2(R2). Since q is real valued, the deficiency
spaces of H are isomorphic, and hence H has at least one self-adjoint extension T [5, p 114].
We denote by σ the spectrum of any such self-adjoint T. Our purpose in this paper is to allow
q to be large and positive as x recedes to infinity, and to give conditions on � and q which
imply that σ = (−∞,∞). This property of σ appears to be new in this paper.

2. Asymptotic straightness

Let us first recall the definition of a singular (or Weyl) sequence in the spectral theory of a
self-adjoint operator T. A consequence of the spectral theorem for T is that a real number λ is
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in the essential spectrum σe of T if there is a sequence fm in D(T ) such that

‖fm‖ = 1, fm ⇀ 0 (weak convergence)

and

‖(T − λI)fm‖ → 0 (4)

as m → ∞ [5, p 415]. Such a sequence is called a singular (or Weyl) sequence. Our choice
of fm in this paper will have compact support and lie in D(H). Thus (3) is satisfied, and (4)
becomes simply∫

R1∪R2

|(� + λI)fm|2 dx → 0 (5)

by (1), subject to fm satisfying the normal derivative condition (2). Here R1 and R2 denote
the (open) portions of the support of fm which lie on the two sides of �.

Our choice of fm also relies on � being a.s. in the sense that � should lie close to
arbitrarily long disjoint line segments as � recedes to infinity. The segments can be located
without restriction in R2 but, purely for convenience, we take them to lie along the x-axis.
Thus we assume that there are disjoint intervals Im = (cm − am, cm + am) on the x-axis with
cm − am → ∞ and am → ∞ and, for x in each Im, � has the equation y = F(x) with

F (r)(x) → 0 (0 � r � 3) (6)

as x → ∞ through the Im. The most general a.s. � which is covered by our methods is
obtained by rotating and translating each Im (and the portion of the curve near to it) to a
position elsewhere in the plane.

We can now proceed to the definition of fm, which is a modification of that given in [1,
(3.3)] to cope with an unbounded q. In the square Sm = (cm − am, cm + am) × (−am, am), we
define

fm(x) = bmhm(x − cm)hm(y) exp{−P(x)|y − F(x)| + iQ(x)}, (7)

where bm is the normalization factor making ‖fm‖ = 1, and hm is as usual a C(2)(−∞,∞)

function such that

hm(t) = 1(|t | � am − 1),= 0 (|t | � am) (8)

and with derivatives independent of m. Next, as in [1, (3.4)], the choice of P(x) is

P(x) = 1
2q(x)(1 + F ′2)−1/2, (9)

where q(x) := q(x, F (x)), this choice making fm satisfy (2). Finally, Q(x) is a real-valued
function still to be chosen.

Next in this section, we use the a.s. property (6) to estimate the size of bm as m → ∞
subject to the following two conditions on q:

q(x) > 0 in Im and
∫

Im

1/q(x) dx → ∞ (10)

as m → ∞. Then, by (7) and (8), we have

1 = ‖fm‖2 ∼ b2
m

∫
Im

·
∫ am

−am

exp{−2P(x)|y − F(x)|} dy dx.

We split the y-integration into the pieces over y � F(x) and y � F(x) to obtain

1 ∼ 2b2
m

∫
Im

1/{2P(x)} dx ∼ 2b2
m

∫
Im

1/q(x) dx

by (6) and (9). Thus

bm ∼
(

2
∫

Im

1/q(x) dx

)− 1
2

. (11)

We also note that (10) and (11) imply that fm ⇀ 0.
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3. The spectrum

We can now use (5) to prove our main theorem that σ = (−∞,∞) under a suitable set of
conditions on F and q.

Theorem 3.1. Let q(x) and F(x) have continuous derivatives up to order 2 and 3 (respectively)
in each Im. In addition to (6) and (10), let

q(x) → ∞ (12)

as x → ∞ through the Im, and let the functions

q ′, qq ′′, q2F ′, qF ′′ (13)

all tend to zero, again as x → ∞ through the Im. Then σ = (−∞,∞).

Proof. We use (5) with an arbitrary λ in (−∞,∞). When x ∈ Sm\�, (7) gives

(� + λ)fm = [P 2 − Q′2 + λ + P ′2(y − F)2 + P 2F ′2

± 2PP ′|y − F |F ′ + 2iQ′{±PF ′ − P ′|y − F |}
−P ′′|y − F | ± 2P ′F ′ ± PF ′′ + iQ′′]fm + Em, (14)

where Em denotes terms containing derivatives of hm, and ± refers to the two sides of �. Now
h′

m(t) and h′′
m(t) are by (8) only non-zero when am − 1 < |t | < am, and it then follows from

(10) and (11) that ‖Em‖ = o(1)(m → ∞).
We now choose Q so that

Q′ =
√

(P 2 + λ) (15)

in Im, this giving a real-valued Q for any λ if m is large enough, by (9), (6) and (12). Thus the
first three terms on the right-hand side of (14) cancel. We have now to show that the remaining
terms there have o(1) norms as m → ∞.

Let us begin with the fourth (and first remaining) term on the right-hand side of (14). We
have from (7)

‖P ′2(y − F)2fm‖2 = b2
m

∫
Im

P ′4(x)h2
m(x − cm)

×
∫ am

−am

h2
m(y){y − F(x)}4 exp{−2P(x)|y − F(x)|} dy dx

∼ b2
m

∫
Im

P ′4(x)

∫ am

−am

{y − F(x)}4 exp{−2P(x)|y − F(x)|} dy dx

by (8). We again split the y-integration into the pieces over y � F(x) and y � F(x), and
then carry out the integration to obtain

‖P ′2(y − F)2fm‖2 ∼ 3

2
b2

m

∫
Im

P ′4(x)/P 5(x) dx. (16)

By (11), the right-hand side here is o(1)(m → ∞) if

P ′4/P 5 = o(1/q)

i.e. if q ′ = o(q) and F ′F ′′ = o(1), by (6) and (9), and these requirements are certainly covered
by (6), (12) and (13).

The next term to consider in (14) is ‖P 2F
′2
fm‖, and this is o(1) if PF ′ = o(1), i.e. if

qF ′ = o(1), and this is also covered by (13). Next again, we have ‖PP ′|y − F |F ′fm‖, and
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this is dealt with similarly to (16), in place of which we now have

‖PP ′|y − F |F ′fm‖2 ∼ 1

2
b2

m

∫
Im

P ′2F ′2/P dx.

By (11) and (9), this is o(1) if q ′F ′ and qF ′′F ′2 are both o(1), again covered by (6) and (13).
We continue in this vein with the remaining six terms on the right-hand side of (14), using

(15) where necessary. The conditions for each of these terms to have a o(1) norm are, in order,
that the following functions should be o(1):

q2F ′; q ′ and qF ′F ′′;
qq ′′, qq ′F ′F ′′, q(F ′F ′′)′ and qF ′F ′′;
q ′F ′ and qF ′2F ′′; qF ′′; q ′ and qF ′F ′′.

These conditions are all covered by (6) and (13), and the proof of the theorem is now complete.
We note that the idea of introducing Q into the definition of fm in (7), together with the

choice (15), is reminiscent of the method in [2] in the different context of the Schrödinger
operator −� + V in RN .

4. Examples

As an example on theorem 3.1, we cite

q(x) = |x|a(x > 1), F (x) = (const)x−b

with a > 0 and b > 0. Here

q(x, F (x)) = {x2 + F 2(x)}a/2.

Then we take Im = (am, 3am)(i.e.cm = 2am), and (10) holds if a < 1. The conditions
involving F in (13) also hold if 2a < b + 1. Thus, altogether,

0 < a < 1, b > max{0, 2a − 1}.
For a second example, suppose that � contains distant disjoint line segments obtained by

rotating and translating the Im, and q = qm (a constant) in each Im. Then P ′ = F ′ = Q′′ = 0
in (14). Hence (12) and (10) give σ = (−∞,∞) if as m → ∞

qm → ∞ and am/qm → ∞.

These two examples raise the question whether there is a continuous/discrete spectrum
dichotomy corresponding to the limit-point/limit-circle dichotomy for the Sturm–Liouville
equation [13, sections 5.10–5.11] [4], the dividing value for q(x) = −xa now being a = 1
rather than a = 2 in [13].
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